
Journal of Modern Optics
Vol. 56, No. 14, 10 August 2009, 1626–1631

Practical formula for the evaluation of high-order multiphoton

absorption in thin nonlinear media
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bDepartamento de Óptica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain

(Received 21 May 2009; final version received 29 July 2009)

We present an analytical formula for the fast and accurate evaluation of nonlinear absorption in materials
exhibiting an admixture of different multiphoton processes. This approach is specifically addressed for its use in
thin films when the slowly varying envelope approximation applies. The contribution of absorptions of distinct
order is conveniently averaged in order to use well-known expressions for a single multiphoton process. In the
latter case, therefore, our simple expression is reduced toward the exact solution.

Keywords: nonlinear absorption; multiphoton absorption; nonlinear beam shaping

1. Introduction

Multiphoton absorption of intense wavefields in
matter is a phenomenon of interest in a great variety
of applications. In multiphoton microscopy, for
example, enhanced optical sectioning is achieved lead-
ing to superresolved three-dimensional imaging with-
out the use of a confocal aperture [1,2]. In this case,
higher order nonlinear absorption (NLA) processes are
mostly proposed to further improve spatial resolution
and light penetration [3,4]. In optical limiting, on the
other hand, highly nonlinear absorbing materials are
also expected to exhibit large transmittance at low
intensities, resistance to laser-induced damage, stability
over time, and ultrafast responses [5,6].

The evaluation of multiphoton absorption in non-
linear flat films is accurately performed within the
slowly varying envelope approximation [7]. This is of
practical interest for instance in pursuit of characteriz-
ing the nonlinear response of a material, where the
open aperture Z-scan provides the standards to deter-
mine the multiphoton absorption coefficients [8]. The
analysis is carried out in a simple manner since the
propagation of the electric field in the nonlinear
medium is described by means of a differential
equation having an analytical solution [9,10]. When
more than one nonlinear process is active, however, the
corresponding solution has not been reported to the
knowledge of the authors. Interestingly, different
approximate formulae considering linear absorption,
two-photon absorption, and third-order nonlinear
absorption, have recently been given elsewhere [11,12].

Let us point out that this is not a purely academic
problem. For instance, ultrashort pulse propagation at
1320 nm in polydiacetylene-PTS exhibits simultaneous
2PA (two-photon absorption) and 3PA [13]. Also, an
exact degeneracy between three- and four-photon
absorption is observed at the peak wavelength of
1890 nm. In chalcogenide glasses, there is found an
important contribution of 2PA in measuring the three-
photon NLA coefficient at 1.06mm in the picosecond
range [11,14]. Even four- and five-photon absorption is
observed in TeO2-based samples at a wavelength of
1550 nm with a small linear absorption coefficient [15].

In this paper we address the problem of determin-
ing in a fast and clear way the laser beam shaping in
passing through a thin slab of a nonlinear material,
driven by an admixture of two different multiphoton
processes of any order. In such a complex nonlinear
material, we may identify and separate accurately the
contribution of each multiphoton process to the field
absorption within the slowly varying envelope approx-
imation. Additionally, practical implementation of the
derived formula is demonstrated in the computation of
open aperture Z-scan traces.

2. Nonlinear absorption in a thin film

Let us consider a pulsed beam propagating in air along
the z axis and impinging normally onto a thin bulk
medium to prove its response upon NLA. In this study
we assume that if the beam intensity is low enough to
neglect NLA in the sample, the transverse profile is not
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disturbed significantly due to diffraction. In this case
the slowly varying envelope approximation applies [7].
Exceptionally, linear absorption in the thin sample is
regarded. Now the intensity is governed by the simple
equation:

dI

dz
¼ ��ðI ÞI, ð1Þ

where z is the propagation depth within the nonlinear
sample, and the intensity-dependent absorption

� ¼ �1 þ �2Iþ �3I
2 þ �4I

3 þ � � � , ð2Þ

includes a linear term, �1 (also denoted as �0 elsewhere
[10] or simply �), and nonlinear terms, �n (for integers
n� 2). Here we consider ultrashort pulse excitations so
that slow (cumulative) nonlinearities such as thermal
nonlinearity are ignored [16,17].

Let us first examine m-photon absorption and
l-photon absorption simultaneously, being 2�m, l.
Starting from the slowly varying envelope approxima-
tion we may simplify the evaluation of the field
observed at the exit plane by means of the following
differential equation

@�m ~I ¼ � ~Im � �ml
~Il ð3Þ

and the contour condition Ĩ¼ 1 at �m¼ 0. We point out
that a linear absorption process may be included in
Equation (3) if l¼ 1 (or m¼ 1) and, alternatively, if we
insert the term ��m1Ĩ on the right-hand side of the
equation, cases that are considered below. Here,
Ĩ¼ I/I0 stands for the ratio of the output intensity
I and the input intensity I0 in the sample, the reduced
axial coordinate �m¼ z/Lm is the ratio of the sample
depth z and the characteristic length for the m-photon
absorption process,

Lm ¼
1

�mIm�10

, ð4Þ

being �m the m-photon nonlinear absorption coeffi-
cient. For instance, in polydiacetylenes typically [13]
�2¼ 6 cmGW�1 and �3¼ 2.7 cm3GW�2 at 1320 nm so
that L2¼ 830 mm and L3¼ 930 mm for a peak intensity
I0¼ 2GWcm�2. Finally,

�ml ¼
Lm

Ll
¼
�l
�m

I l�m0 ð5Þ

represents the relative strength of both NLA processes.
In our numerical example �23¼ 0.9 suggesting a
balanced charge of both nonlinear phenomena.

The permutation m$ l in (3) provides an equiva-
lent form of the differential equation; if one combina-
tion shows �ml� 1 the counterpart gives �lm ¼ �

�1
ml � 1.

We may restrict our problem considering mPA a
dominant process over lPA, whence leaving the unity

as the maximum value of the coupling parameter �ml.

According to Equation (5), �ml� 1 at sufficiently low

intensities if m5 l.
Validity of Equation (3) is restricted to nonlinear

interactions with matter producing small and modest

alterations of the beam profile. Otherwise, multi-

photon absorption may lead to self-focusing within

the sample. In mathematical terms we impose

�mj@�mĨ j� Ĩ. Using Equations (4) and (5) we infer a

sufficient condition z�Ln (or �n� 1) for n¼m, l.
In general, one cannot find an analytical solution of

Equation (3). For a single NLA process being �ml¼ 0,

a solution may be provided in a closed form. In this

case, Equation (3) is reduced to @�mĨ¼�Ĩ
m, and the

exit intensity in the medium yields

~I ¼
1

½1þ ðm� 1Þ�m�
1=ðm�1Þ

: ð6Þ

In some circumstances, e.g. (m� 1)�m� 1, Equation (6)

provides a significant beam depletion due to strong

m-photon absorption, a result that is not valid in our

approach. Therefore, we focus our attention on the

regime �m� 1. In this case we may expand Equation (6)

into a Taylor series around �m¼ 0 giving

~I ðSÞ ¼ 1þ
XS
s¼1

�sm
s!

Ys�1
p¼0

½ p� pm� 1� þO½�m�
Sþ1, ð7Þ

where S is a positive integer. In the limit S!1, I (1)

provides an exact solution of the transmitted field

intensity. We point out that �m¼ 0 stands for

sufficiently thin samples but also for sufficiently low

input intensities such that NLA of m photons is

negligible, in accordance with the definition

�m ¼ �mzI
m�1
0 . Specifically Ĩ (1)¼ 1� �m, and the para-

bolic approximation yields

~I ð2Þ ¼ ~I ð1Þ þ
m

2
�2m ¼ 1� �m þ

m

2
�2m, ð�ml ¼ 0Þ: ð8Þ

Interestingly, we may provide a solution of the

more complex Equation (3) also in terms of poly-

nomials of �m. We point out that a different approach

using the method of Adomian may provide an

approximate solution of (3) given also in terms of

a series expansion [12,18]. Developing Ĩ into a Taylor

series about the origin, the first-order solution yields

~I ð1Þ ¼ ~I0 þ ð@�m ~I Þ0�m ¼ 1� ð1þ �mlÞ�m, ð9Þ

where subindex 0 stands for the specific value at �m¼ 0.

Equations (7) for S¼ 1 [also shown in (8)] and (9) are

formally equivalent within this linear approach; how-

ever, for simultaneous NLA processes we use

(1þ �ml)�m instead of �m. In this context we interpret
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that, in a low-order approximation, our solution for

competing NLAs might correspond to the solution for

a single one with �m! �ml¼ z/Lml and characteristic

absorption depth Lml, satisfying

1

Lml
¼

1

Lm
þ

1

Ll
: ð10Þ

The average length Lml approaches Lm in the low-

intensity regime where Lm�Ll, but shifts toward Ll as

long as the input intensity increases. In general, since

two NLA processes are present, Lml is lower than either

Lm or Ll individually. The quadratic (second-order)

approximation obtained from the Taylor series yields

~I ð2Þ ¼ ~I ð1Þ þ
ð1þ �mlÞðmþ l�mlÞ

2
�2m: ð11Þ

We point out that the last term of the polynomial

expansion is evaluated using the chain rule

@2�m
~I ¼ @ ~Ið@�m

~I Þ@�m ~I ð12Þ

and Equation (3). Once again, Equation (11) would be

associated with beam depletion under a single NLA

process [see (8)] in using the axial coordinate

(1þ �ml)�m, as previously discussed within the linear

approximation, and also substituting the number m of

photons by the average

�m ¼
Lml

Lm

� �
mþ

Lml

Ll

� �
l ¼

mþ l�ml

1þ �ml
: ð13Þ

This parameter spans from m to l as �ml moves from

zero (Lm�Ll) to infinity (Lm�Ll). We point out that

the weight of each order [i.e. (Lml/Lm) for the order m]

varies from zero to the unit, and the sum of all of them

obviously gives

Lml

Lm

� �
þ

Lml

Ll

� �
¼ 1: ð14Þ

Moreover, �m stands for the arithmetic mean of m and

l at balanced lengths Lm¼Ll (�ml¼ 1).
Solution of Equation (3) is computed numerically

and represented graphically in Figure 1 for different

values of m and l. A unit value of �ml is selected in

order to analyze NLAs with balanced strengths within

the sample. The linear approach given in (9) over-

estimates field attenuation due to absorption, whereas

the quadratic approximation (11) underestimates it.

The validity of these approximations is restricted to

low depths, �m� 1, and deviations upon the exact

solution become severe if �m approaches unity. Though

not represented in the figure, convergence with higher-

order solutions gives results that are extremely slow,

showing strong oscillations upon the order S of the

approach if �m91. This suggests that a Fourier

expansion in terms or harmonic functions could be

more convenient than a Taylor series of polynomials.

Nevertheless, we follow a different approach next.
Let us exploit the fact that beam depletion under

simultaneous mPA and lPA behaves similarly to single
�mPA, for which the exact solution (6) might be

provided. Hence, using the axial coordinate �ml instead

of �m in Equation (6), and substituting the number m of

photons absorbed in the process by the average �m

given in (13), we finally have

~I 	
1

½1þ ð �m� 1Þ�ml�
1=ð �m�1Þ

, ð15Þ

where �ml¼ z/Lml, that is, �ml¼ (1þ �ml)�m. In the limit

�ml¼ 0, obviously, Equation (15) simplifies to

Equation (6) giving the exact solution.
In Figure 2 we inspect graphically the accuracy of

(15) for the intermediate value �ml¼ 1. Within the

interval of interest, 0� �m� 1, deviations of the

computed intensities and those available from

Equation (15) have the upper bound 9.7
 10�3

found at �2¼ 1 for mixed 2PA and 3PA processes,

representing a relative error of less than 1%. For

simultaneous 3PA and 4PA, accuracy improves since

deviation decreases to 5.1
 10�3 at �3¼ 1.
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Figure 1. Evolution of Ĩ when mPA and lPA are present
simultaneously. Depth �m is in the horizontal axis and the
parameter �ml¼ 1. Numerical evaluation of (3) is plotted with
solid lines. Also, the linear approximation (9) is drawn with
dotted lines, and I (2) of Equation (11) is represented by
dashed lines. (The color version of this figure is included in
the online version of the journal.)
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3. Samples with strong linear absorption

Literature values for the linear-optical absorption
coefficient �1 in the near-infrared region vary between
0.1 and 100 cm�1 for PTS [19], the example given
above, giving characteristic lengths as short as
L1¼ 100 mm. Linear absorption dominates over NLA
processes at sufficiently low values of I0 and therefore,
such an effect cannot be neglected in this regime.
In this sense, a solution of Equation (3) may be
provided for l¼ 1, that is, when linear absorption and
only a single nonlinear process is active, which is
written as [9,14]

~I ¼
exp ��m1�mð Þ

½1þ ðm� 1Þ�effm�
1=ðm�1Þ

: ð16Þ

Here,

�effm ¼
1� exp �ðm� 1Þ�m1�m½ �

ðm� 1Þ�m1
ð17Þ

stands for the effective axial coordinate. Importantly,
the product �m1�m (X�1) is independent of Lm. Also,
�effm and Equation (16) lead to �m and Equation (6),
respectively, if �m1¼ 0.

The analyticity of solution (16) suggests that an
approach of Ĩ may be given for the complete equation

@�m ~I ¼ ��m1
~I� ~Im � �ml

~I l, ð18Þ

which accounts for linear absorption and two different
NLA processes, simultaneously. Accordingly, we may
follow the procedure given above identifying the terms
in the parabolic series expansion of Ĩ about the origin,
�m¼ 0, derived here from Equation (16) as

~I 	 1� ð1þ �m1Þ�m þ
ð1þ �m1Þðmþ �m1Þ

2
�2m, ð19Þ

and also from Equation (18) giving

~I 	 1� ð1þ �m1 þ �mlÞ�m

þ
ð1þ �m1 þ �mlÞðmþ �m1 þ l�mlÞ

2
�2m: ð20Þ

Using over Equation (19) [and Equation (16)] the
normalization of the axial coordinate �m! �ml¼ z/Lml

in terms of the average length of Equation (10), and
also substituting the number m of photons by the
average �m of (13), lead to severe simplifications as
m�m ! �m�ml ¼ ðmþ l�mlÞ�m [and trivially �m!
(1þ �ml)�m]. The required approach is straightfor-
wardly attained if we additionally substitute
�m1¼Lm/L1 by

� �m1 ¼
Lml

L1
, ð21Þ

allowing the conservation of the coordinate �1¼ �1z,
i.e. �m1�m ¼ � �m1�ml. Based upon the averages intro-
duced above, we may recast Equation (16) as

~I ¼
exp ��1ð Þ

½1þ ð �m� 1Þ�eff �m�
1=ð �m�1Þ

, ð22Þ

to account for different NLA processes. The formula
shown in Equation (22) is the main result presented in
this paper. The effective axial coordinate

�eff �m ¼
1� exp �ð �m� 1Þ�1½ �

ð �m� 1Þ� �m1
, ð23Þ

also has been transformed conveniently from (17) by
using the average �m and � �m1 instead of the integer
m and �m1, respectively.

Validity of Equation (22) is examined in Figure 3
for balanced absorption processes, i.e. �ml¼ 1 and
�m1¼ 1. Numerical simulations are also depicted, and
an excellent agreement with Equation (22) is remark-
able. We point out that approach (22) provides the
exact value of Ĩ in the limits �ml¼ 0, �m1¼ 0, �ml!1,
and �m1!1.

4. Application to the evaluation of Z-scan traces

From an experimental point of view, nonlinear samples
are commonly proved with paraxial Gaussian beams
focused with low-numerical-aperture lenses. Top-hat
beams and trimmed Airy beams are claimed to present
some advantages over Gaussian beams for Z-scan
experiments [20]; however, beam shaping of the laser
beam is required. Also, Gaussian beams are found to
be more attractive in theoretical studies because the
three-dimensional distribution of the field is an ana-
lytic solution of the paraxial wave equation [21]. In this
study we assume a sufficiently narrow bandwidth of

IN
T

E
N

S
IT

Y

DEPTH

m = 3

l = 4

m = 2

l = 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Behavior of Ĩ within depths �m� 1, assuming mPA
and lPA occur at �ml¼ 1. Numerical evaluation of (3) is
plotted with solid lines. Also, the analytical approach given
in (15) is drawn with dotted lines. (The color version of this
figure is included in the online version of the journal.)
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the pulsed wave in order to neglect spatiotemporal
couplings associated with ultrafast beam propagation
[22,23]. For convenience, we use normalized spatial
coordinates: the radial coordinate r involves a normal-
ization with respect to the beam waist w0 and the axial
coordinate z is given in units of the Rayleigh range
zR ¼ kw2

0=2, k¼!/c being the wavenumber in air.
If the waist plane of the Gaussian beam is found at
z¼ 0 (neglecting focal shifts [24], this is the focal plane
of the lens), the instantaneous intensity at the input
plane of the scanned sample yields

I0ðr, z, tÞ ¼ EðtÞw�2 exp �2r2=w2
� �

, ð24Þ

with

wðzÞ ¼ ð1þ z2Þ1=2 ð25Þ

being the Gaussian width, and E(t) the intensity of the
pulse envelope at focus, (r, z)¼ (0, 0). The temporal
coordinate t supports a normalization over the pulse
duration such that

1

E0

ð1
�1

dtEðtÞ ¼ 1, ð26Þ

where E0 is the maximum instantaneous intensity. For
the sake of convenience, from hereon we consider pulse
waveforms with a Gaussian profile. In this case we
write E(t)¼E0 exp(��t

2) so that its FWHM yields
D�¼ 2(ln 2/�)1/2	 0.94. We point out that our analysis
may be extended to other waveforms
straightforwardly.

In the open-aperture mode of Z-scan measure-
ments, light transmitted through the sample is fully
collected. Mismatching of the linear index of refraction
of the sample and air induces the incident beam to be

partially reflected, an effect that may be treated in the
experimental data and is therefore ignored here. The
output intensity I¼ I0Ĩ is obtained from Equations (22)
and (24), which varies in space and time. For a thin
nonlinear material of width L, the coordinate �m
reaches a maximum value

Dm ¼ �mLE
m�1
0 ð27Þ

at focus. Also the coupling parameter satisfies
�ml�Dl/Dm (if m5 l ). Upon recording of the inte-
grated intensity at the exit plane of the scanned sample,

PðzÞ ¼

ð1
�1

dt

ð1
0

2prdrIðr, z, tÞ, ð28Þ

changes are found in the vicinity of the Gaussian focus,
jzj5 1. In the far-field, jzj� 1, the output intensity
I! I0 exp(�D1) so that Equation (28) yields

P1 ¼ lim
z!1

PðzÞ ¼
p
2
E0 exp �D1ð Þ: ð29Þ

Commonly, Z-scan signatures refer to traces of the
ratio T¼P/P1, which is interpreted as the normalized
transmittance of the sample as being scanned axially.
We point out that the use of Equation (22) to track the
Z-scan trace leads to an ordinary numerical
integration.

In order to simplify our discussion for the remain-
der of Section 4, let us neglect linear absorption by
using the limit D1! 0. In Figure 4 we depict Z-scan
signatures when the sample experiences 2PA and 3PA
simultaneously (subfigure on the left), and when 3PA
and 4PA are present (on the right). The strength of
each NLA process is characterized by the correspond-
ing parameters Dm and Dl. Numerical simulations of
the transmittance T are performed using the approxi-
mated Equation (22) [also Equation (15)]; we have
observed by direct comparison with numerical compu-
tation of Equation (3) that these traces are of extremely
high accuracy for low and intermediate values of Dm

and Dl. Specifically, Z-scan responses are symmetric
even functions with respect to the origin, z¼ 0. As
expected, NLA is maximum at the Gaussian focus.
Moreover, the V-shaped response T shows a distinct
tail decay and valley value, a fact that may be
employed to determine NLA coefficients of the
sample from experimental data [10].

5. Conclusions

In this paper we have derived a simple formula,
Equation (22), to use deductively when multiphoton
absorption of different nature arise simultaneously.
When a single nonlinear process governs the wave
propagation, Equation (22) gives the solution of the
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included in the online version of the journal.)

1630 J.J. Miret et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
V
a
l
e
n
c
i
a
]
 
A
t
:
 
0
9
:
3
3
 
2
8
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



intensity evolution in the SVEA. As a particular
feature, it is expressed in terms of a characteristic
length Lm, which is inversely proportional to the
m-photon nonlinear absorption coefficient, and the
number m of photons involved in the nonlinear
process. Our approach consists of the parametrization
of the nonlinear beam propagation, which is formu-
lated in terms of a polynomial series expansion. In the
general case, simple rules are disclosed for the average
of Lm and m of the different high-order nonlinear
absorption processes that are considered. Thus, the
relevancy of our method lies in taking a well-known
expression and making it have general application.

Finally, we have put Equation (22) serving a
utilitarian purpose. Specifically, we have demonstrated
fast and accurate computation of open aperture Z-scan
signatures. In this case, an ordinary numerical inte-
gration leads to the trace tracking. Numerical simula-
tions are presented for 2PA and 3PA admixes, and also

for simultaneous 3PA and 4PA processes.
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Figure 4. Z-scan signatures for 2PA and 3PA admixes (left) and simultaneous 3PA and 4PA processes (right). Dominant mPA
with Dm¼ 1 (and Dl¼ 0) is drawn with solid line. Other values of the ordered pair (Dm, Dl) are represented by different curve
styles. (The color version of this figure is included in the online version of the journal.)
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